Danai Koutra is an Associate Professor in Computer Science and Engineering at the University of Michigan, where she leads the Graph Exploration and Mining at Scale (GEMS) Lab. She is also an Amazon Scholar. Her research focuses on principled, practical, and scalable methods for large-scale real networks, and her interests include graph learning, graph neural networks, graph summarization, knowledge graph mining, graph learning, similarity and alignment, and anomaly detection. She has won a Presidential Early Career Award for Scientists and Engineers (PECASE), an NSF CAREER award, an ARO Young Investigator award, the 2024 IBM Early Career Data Mining Research Award, the 2023 Tao Li Award, the 2020 SIGKDD Rising Star Award, research faculty awards from Google, Amazon, Facebook and Adobe, a Precision Health Investigator award, the 2016 ACM SIGKDD Dissertation award, and an honorable mention for the SCS Doctoral Dissertation Award (CMU). She holds a patent on bipartite graph alignment, and has multiple papers in top data mining conferences, including 9 award-winning papers and the 2022 IEEE ICDM Test-of-Time Award. She is Program co-Chair for ACM KDD 2024 and an Associate Editor of ACM TKDD. She was a Program co-Chair for ECML/PKDD 2023, a track co-chair for The Web Conference 2022, a co-chair of the Deep Learning Day at KDD 2022, the Secretary of the new SIAG on Data Science in 2021, and has also routinely served in the organizing committees of all the major data mining conferences. She has worked at IBM, Microsoft Research, and Technicolor Research. She earned her Ph.D. and M.S. in Computer Science from CMU, and her diploma in Electrical and Computer Engineering at the National Technical University of Athens.